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ABSTRACT 

In this paper, the eighth-order predictor-corrector method is presented for solving quadratic Riccati 

differential equations. First, the interval is discretized and then the method is formulated by using 

Newton’s backward difference interpolation formula. The stability and convergence of the method 

have been investigated. To validate the applicability of the proposed method, two model examples 

with exact solutions have been considered and numerically solved. Maximum absolute errors are 

presented in tables and figures for different values of mesh size h and the present method gives 

better results than some existing numerical methods reported in the literature.   
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1. INTRODUCTION 

The Riccati differential equation is named after the Italian nobleman Count Jacopo Francesco 

Riccati (1676–1754). The book of Reid (1972) contains the fundamental theories of Riccati 

equation, with applications to random processes, optimal control, and diffusion problems. Beside 

important engineering and science applications that today are known as the classical proved, such 

as stochastic realization theory, optimal control, robust stabilization, and network synthesis, the 

newer applications include such areas as financial mathematics (Biazar and Islami, 2010). 

Nonlinear deferential equations are essential tools for modeling many physical situations, for 

instance, spring mass systems, resistor-capacitor-induction circuits, bending of beams, chemical 

reaction, pendulums, motion of rotating mass around body and so on.  

Riccati equation is a basic first-order nonlinear ordinary differential equation. It has the 

form  which can be considered as the lowest order nonlinear 

approximation to the derivative of a function in terms of the function itself. It is assumed that 

 and are real functions of the real argument . It is well known that solutions 

to the general Riccati equation are not available and only special cases can be treated (Ince, 1956). 

Even though the equation is nonlinear, similar to the second order inhomogeneous linear ordinary 

differential equations one needs only a particular solution to find the general solution (Anas et al., 
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2010). This problem has attracted much attention and has been studied by many authors. Tan and 

Abbasbandy (2008) employed the analytic technique called Homotopy Analysis Method (HAM) 

to solve a quadratic Riccati equation. Mukherje and Roy (2012) presented the solution of Riccati 

equation with variable co-efficient by differential transformation method. Batiha (2015) applied 

the multistage variational iteration method as a new efficient method for solving quadratic Riccati 

differential equation. Gemechis File and Tesfaye Aga (2016) presented fourth order Runge-Kutta 

method for solving quadratic Riccati differential equations. Vinod and Dimple (2016) presented 

Newton-Raphson based modified Laplace Adomian decomposition method for solving quadratic 

Riccati differential equations. Gemadi et al. (2017) presented fifth order predictor corrector 

method for solving quadratic Riccati differential equation. Fateme and Esmaile (2017) presented 

approximate solution for quadratic Riccati differential equations by Bezier curves method. 

Ghomanjani and Khorram (2017) presented method of Bezier curves, by developing the Bezier 

polynomial of degree n. Ghomanjani and Shateyi (2020) presented an effective algorithm for 

solving quadratic Riccati differential equation based on Genocchi polynomials. 

Hence, there are many continuous attempts to get a method that yields more accurate 

results. Therefore, the purpose of this study is to formulate a more accurate and stable method for 

solving quadratic Riccati differential equation than some existing methods in the literature. 

 

2. DESCRIPTION OF THE METHODS 

2.1 Description of the Method 

Consider the quadratic Riccati differential equation of the form 

 
, , . (1) 

Where,  and are continuous with  and are arbitrary constants for 

, which is unknown function. To describe the scheme, we denote the problem in equation (1) 

as: 

 
. (2) 

And divide the interval   into  equal sub intervals of mesh length  and the mesh points 

given by . Then   
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Where,  is positive integer.  

Integrating equation (2) on interval  we obtain: 

 
. (3) 

To derive the method, we approximate  by Newton’s backward difference interpolation 

polynomials. 

2.1.1. Description of Predictor Method 

Taking t data values , we fit the Newton’s 

backward difference interpolating polynomial of degree  and we get:    

     (4) 

Where,  and   is the error term, when  

lies in some interval containing the points   and . The limits of integration in 

equation (3) becomes: ,   and  

Replacing   by    in equation (3) and using equation (4), we get:  

 
 (5) 

By choosing different values for t, we get different methods. But for this particular study, 

we choose the value for which is of order eighth method.  

Now, on integrating term by term in equation (5) with respect to , we obtain: 
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and

 

Thus, we get: 

 

 

(6) 

 Where,  is the local truncation error. Hence, equation (6) 

is called eighth order predictor method.   

2.1.2. Description of Corrector Method 

Taking  data values , we fit the 

Newton’s backward difference interpolating polynomial of degree  and we get:    
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 Where,  and 

 is the error term, when  lies in some interval 

containing the points  and . The limits of integration in equation (3) becomes: 

,   and  

Replacing   by    in equation (3) and using equation (7) we get:  

 
 (8) 

   By choosing different values for t, we get different methods. But for this particular study, 

we choose the value for  which is of order eighth method. Now, on integrating term by term 

in equation (8) with respect to , we obtain: 
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(9) 

Where,  is the local truncation error. Hence, equation (9) is 

called eighth order corrector method.   

Remarks: The eighth order predictor corrector method uses 

and  in the calculation of .  This method is not self-starting; eight initial 

points,  and  must be given in 

advance in order to generate the points . For that reason, we applied an eighth order 

Runge-Kutta method to generate the first eight starting values. 

 

3. ANALYSIS OF THE METHOD 

3.1 Stability  

Definition 1 Let   are the (not necessarily distinct) roots of the characteristic equation 

given by: 

  (10) 

It is associated with the multistep difference method of equations (6) and (9) given as:    
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If and all roots with absolute value are simple roots, then the difference 

method is said to satisfy the root condition.  

Definition 2 (Stability) 

i. Methods that satisfy the roots condition in which is the only root of the 

characteristic equation with magnitude one is called strongly stable.  

ii. Methods that satisfy the root condition and have more than one distinct root with 

magnitude one is called weakly stable. 

iii. Methods that do not satisfy the root condition are called unstable. 

Theorem 1 The eighth-order predictor method in rquation (6) is strongly stable.  

    Proof: The eighth order predictor method in Eq. (6) can be expressed as: 

  (12) 

 

In this case, we have:  
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The characteristic equation for the method becomes: 

 

are the roots of the polynomial. Therefore, it satisfies the root condition and is strongly stable by 

Definition 2 (ii).    

3.2. Consistency 

Definition 3 (Consistency) The method is consistent, if the local truncation error 

 

Thus   

Therefore, the methods in Eq. (6) and (9) are consistent by Definition 3.  

Definition 4. Consistency and zero stability are the necessary and sufficient conditions for the 

convergence of any linear multistep methods. 

Hence, according to Definition 4 our methods are convergent since they are both consistent and 

stable. 

 

4. NUMERICAL EXAMPLES 

In order to test the validity of the proposed method, two quadratic Riccati differential equations 
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errors are approximated by the formula, and where, 
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at the nodal point . 

Example 1. 

Consider the following quadratic Riccati differential equation. 

 

( )7 6 6

1 2 3 4 5 6 7

( ) 1 0

1, 0

P     

      

= − = − =

 = = = = = = =

( )

( ) ( )8 (8) 7 (7)

8 7

0 as 0.

So, we have

1070017 33953
and .

3628800 3628800

kT h h

T h f T h f 

→ →

= = −

( ) 0 as 0for 7,8.kT h h k→ → =

( ) , for 0,1,2,...i iE y x y i N= − =

( ) andi iy x y

ix

( ) ( ) ( )21
, 0 1,0 1.

1

dy
y x y x y x

dx x
= − + − =  

+



Wase, K., Alemayehu, S and Solomon, G (MEJS)                                             Volume 13(2):213-224, 2021 

 

© CNCS, Mekelle University                                           221                                              ISSN: 2220-184X 

 

 

The exact solution is  

Table 1. Comparison of maximum absolute errors for Example 1. 

        

Present Method 

  7.2927e-09 1.1063e-10 2.0551e-11 5.1508e-12 3.4039e-13 2.1982e-14 

  1.1505e-08 1.5498e-10 1.8855e-11 4.7724e-12 3.1597e-13 2.0539e-14 

  1.3882e-08 1.3455e-10 1.7661e-11 4.4893e-12 2.9743e-13 1.9318e-14 
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Figure 1. The graph of numerical and exact solution of example 1 for N=15. 
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Example 2. 

Consider the following quadratic Riccati differential equation. 

 The exact solution is  

Table 2. Comparison of maximum absolute errors for Example 2. 

       

Present Method 

 1.4651e-08 2.4095e-10 4.5286e-11 1.1260e-11 7.2786e-13 4.6407e-14 

 3.0951e-08 4.5548e-10 5.2663e-11 1.3088e-11 8.4577e-13 5.3957e-14 

 4.9486e-08 5.2983e-10 6.1297e-11 1.5234e-11 9.8410e-13 6.2839e-14 

 

 

 

 

 

 

 
 

 7.0879e-08 

9.5829e-08 

1.2515e-07 

1.5979e-07 

1.9052e-07 

2.2509e-07 

2.6702e-07 

 

6.1749e-10 

7.2093e-10 

8.4327e-10 

9.8835e-10 

1.1608e-09 

1.3664e-09 

1.6120e-09 

 

7.1448e-11 

8.3418e-11 

9.7576e-11 

1.1436e-10 

1.3432e-10 

1.5811e-10 

1.8653e-10 

 

1.7756e-11 

2.0731e-11 

2.4250e-11 

2.8422e-11 

3.3383e-11 

3.9295e-11 

4.6357e-11 

 

1.1471e-12 

1.3392e-12 

1.5667e-12 

1.8361e-12 

2.1563e-12 

2.5380e-12 

3.0183e-12 

 

7.4163e-14 

8.6819e-14 

1.0081e-13 

1.1680e-13 

1.3656e-13 

1.6076e-13 

1.9007e-13 

 

 

 

 

 

 

 

 

Figure 2. The graph of numerical and exact solution of example 2 for N=15. 

 

5. DISCUSSION 

In this paper, eight order predictor-corrector method is presented for solving quadratic Riccati 

differential equations. The stability and convergence of the method have been investigated. The 

study is implemented on two model examples with exact solutions by taking different values for 

N, and the computational results are presented in the Tables. The results obtained by the present 

method are compared with the results of Gemechis and Tesfaye (2016).   Furthermore, from the 

Tables it is significant that all of the absolute errors decrease rapidly as h decreases which in turn 
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shows the convergence of the computed solution. This shows that the small step size provides the 

better approximation. Briefly, the present method is stable, more accurate and effective method 

for solving quadratic Riccati differential equations.     
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