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ABSTRACT 

Even though data on soil bulk density (BD) and total nitrogen (TN) are essential for planning 

modern farming techniques, their data availability is limited for many applications in the 

developing word. This study is designed to estimate BD and TN from soil properties, land-

use systems, soil types and landforms in the Mai-Negus catchment, northern Ethiopia using 

stepwise multiple regression (SMR) and generalized linear model (GLM) analyses. Different 

soil properties and other catchment attributes were collected following a standard procedure. 

The SMR analysis showed overall model coefficients of determination (R
2
) of 0.91 and 0.89 

with significant F-statistics for the relationships of BD and TN, respectively, with soil 

properties, land-use and landforms. In addition, the GLM analysis resulted in an overall R
2
 of 

0.92 with significant F-statistic for BD, and an R
2
 of 0.94 with significant F-statistic for TN. 

The model coefficients of both analyses for the dependent variables showed higher for 

organic carbon (OC) as compared to the other variables even though higher values were 

found from GLM. This study thus confirmed that practices which improve OC can strongly 

influence the variation of both dependent variables. This study suggested that BD and TN 

should be estimated based on the relationships explained by the different techniques 

(analysis) in similar conditions in order to improve data availability; however, the GLM is 

preferable as it considers the effect of the interaction terms.   

 

Keywords: Bulk density, Total nitrogen, Stepwise multiple regression, Generalized linear 

model, Mai-Negus catchment. 

 

1. INTRODUCTION 

The need to achieve sustainable use of soil resource has been an increasing concern to 

decision and policy makers. This is mainly the concern of many developing countries like 

Ethiopia, because soil degradation such as soil nutrient depletion and physical degradation 

have alarmingly increased and become serious threats to agricultural productivity (Fassil 

Kebede and Yamoah, 2009). Previous studies have showed that low soil nutrients are among 

the most crop production limiting factors in Ethiopia (e.g., Kamara and Haque, 1988; 

Chikowo et al., 2010). The positive feedback dynamics between growing population, land-

cover and climate change have led to a rapid loss in the capacity of soils to deliver essential 

nutrients such as nitrogen (Gebreyesus Brhane Tesfahunegn et al., 2011). Other studies also 

reported that most crop and soil management practices and topography of tropical ecosystems 

(e.g., Ethiopia) could cause significant modifications in soil properties such as nitrogen and 

bulk density as such factors influence erosion and nutrient losses (Lal, 1996; Shepherd et al., 

2000; Agoumé and Birang, 2009). However, literature showed that modifications of soil 
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biological and chemical properties are more rapid than soil physical properties (Schipper and 

Sparling, 2000; Birang et al., 2003; Agoumé and Birang, 2009).  

Strong relationships between plant communities and soils, and landscapes are documented by 

various studies (e.g., Wondzell et al., 1996). Such studies suggest that the patterns of plant 

communities vary as a result of the influence of soil properties on soil water and nutrient 

availability across landscapes. However, site specific understanding on the relationships of 

soil nutrient (e.g., total nitrogen, TN) and soil physical parameter (e.g., bulk density, BD) 

with catchment attributes (soil properties, landform, land-use systems, and soil types) 

demands research attention in fragile ecosystems in order to highlight the main influencing 

parameters. To do so, there are many cases in which it is desirable to develop empirical 

relationships among some soil physical and chemical properties and with other catchment 

attributes (Rashidi and
 

Seilsepour, 2009; Seybold et al., 2009). This is based on the fact that 

BD and TN are often determined using laborious and time consuming methods but these soil 

parameters can be estimated on the basis of easily available parameters (Périé and Ouimet, 

2008). In addition, dense sampling is required to adequately characterize the spatial 

variability of soil BD and TN, which may not be economically affordable (Rashidi and
 

Seilsepour, 2009). It may be thus more suitable and economically feasible if a method which 

uses easily available soil data and other catchment attributes that influence soil conditions in 

a catchment is developed to serve as a proxy for estimating soil parameters such as BD and 

TN (Heuscher et al., 2005; Rashidi and
 

Seilsepour, 2009; Périé and Ouimet, 2008).   

Literature showed that regression models have been developed to predict soil parameters such 

as BD and TN from soil physical and chemical datasets (Akgül and Özdemir, 1996; Heuscher 

et al., 2005). A linear regression model for predicting soil TN from soil organic carbon (OC) 

by Rashidi and
 

Seilsepour (2009) and logarithmic regression for BD estimation by Prévost 

(2004) and Périé and Ouimet (2008) were obtained. According to Heuscher et al. (2005), 

stepwise multiple regressions indicated that OC was the strongest contributor to BD 

prediction. However, such estimations of TN and BD were as a function of soil OC only or 

using some soil properties, indicating that there is a limitation in the past studies as mainly 

focused on specific or limited soil datasets. Consequently, there is lack of published results 

that demonstrated the relationship of BD and TN with other soil properties and catchment 

attributes such as soil types, land-use types, and landforms in the existing literature (Wagner 

et al., 1994; Akgül and Özdemir, 1996; Heuscher et al., 2005; Rashidi and
 

Seilsepour, 2009). 

In general, the importance of soil nutrients such as TN for plant production is clearly 

demonstrated by experts and farmers in Ethiopia conditions. For example, Fassil Kebede and 
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Yamoah (2009); and Rashidi and
 

Seilsepour (2009) have reported that nitrogen (N) is among 

the soil macronutrients that often limit plant growth. Despite of this fact, presently, there is no 

generally adopted and completely reliable and easy method for prediction of nitrogen in soil. 

Knowledge of soil BD is also an essential indicator for soil management, as BD shows soil 

compaction and structural degradation. In addition, soil BD is often used in models, 

characterizing field conditions, estimate soil porosity, and convert volumetric measurements 

(Reinsch and Grossman, 1995; Arshad et al., 1996).  Other studies showed that soil BD is a 

basic soil property which influences other soil physical and chemical properties and 

catchment characteristics (e.g., Arshad et al., 1996; Périé and Ouimet (2008)). Site specific 

knowledge of soil BD and TN are essential for planning modern farming techniques and thus 

for sustainable management of soil resources (Akgül and Özdemir, 1996).  

Despite the above facts, soil BD and TN are dynamic soil property which vary with the 

structural condition of the soil as this can be altered by cultivation, trampling by animals, 

land-use types, erosion-deposition processes, and weather condition such as raindrop impact 

(Reinsch and Grossman, 1995; Akgül and Özdemir, 1996; Arshad et al., 1996). This makes 

measuring and/or estimating BD and TN difficult, time consuming and expensive at 

catchment-scale. As a result of this, many studies use single BD value in most cases while 

estimating for other locations. Similarly, direct laboratory measurement of soil TN is 

generally impractical to get data for most applications. It is therefore essential to explore 

methods that are required for predicting soil BD and TN from more easily and routinely 

measured soil properties and other catchment attributes. 

Though few studies illustrated the development of BD and TN prediction equations using a 

range of soil data (e.g., Arshad et al., 1996), little is documented on the relationships of soil 

BD and TN with soil properties and other catchment attributes such as land-use systems, soil 

types, and landforms (small units of the landscape that possess similar slope, flow and 

deposition). However, acquiring scientific information on their relationships of a combined 

and separate effect on BD and TN is required so as to guide for decision makers in the choice 

of appropriate cropping systems and suitable land-use and soil management practices in a 

catchment (Aruleba and Ajayi, 2011).  

The objective of this study is to examine the relationships of soil BD and TN with selected 

soil properties, land-use systems, soil types, and landforms in Mai-Negus catchment, northern 

Ethiopia, using stepwise multiple regression (SMR) and generalized linear model (GLM). 

The target of this study is to identify the main and interaction terms of soil parameters and 

other catchment attributes, and assesses the relevance of the data groups (soil properties, soil 
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type, land-use systems and landform) in predicting BD and TN using the two statistical 

models. Such prediction models improve the availability of soil BD and TN data for 

researchers and development workers and their interpretations can be applied for decision-

making processes such as soil-plant management planning in similar conditions. 

 

2. MATERIALS AND METHODS 

 2.1. Study Site  

This study was conducted in the Mai-Negus catchment of Tigray region (12
o
00´-15

o
00´ N 

latitude and 36
o
30´-41

o
30´ E longitude), northern Ethiopia (Fig 1). The catchment has an area 

of 1240 ha and altitude ranging from 2060 to 2650 m above sea level. The study catchment 

has a mean annual temperature of 22
o
C and precipitation of 700 mm (Aksum Meteorological 

Station, 2009). Most of the rainfall (> 70%) occurs within July and August. Land use is 

predominantly arable, with teff (Eragrostis tef) being the major crop along with different 

proportions of pasture land and scattered patches of trees, bushes and shrubs (Gebreyesus 

Brhane Tesfahunegn, 2011). The major rock types are lava pyroclastic and meta-volcanic. 

Soils are mainly Leptosols on the very steep positions, Cambisols on middle to steep slopes 

and Vertisols on the flat areas (Gebreyesus Brhane Tesfahunegn, 2011).  

 

Figure 1. Study area: Ethiopia (A), Tigray (B) and Mai-Negus catchment (C). The blue color 

shaded area is the reservoir. 
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2.2. Generating Catchment Landforms, Elevation, Soil Types, and Land-Use Types 

In order to develop the different catchment attributes, field reconnaissance surveys and 

informal group discussions were executed with a team consisting of the author, two 

development agents and six farmers who are knowledgeable about the study catchment. Data 

were collected from June to December 2009 using the research framework which is given in 

figure 2. The detail data collection and generating procedures of each catchment attribute is 

given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Research framework used during this study. Note that the intersections of attributes 

(landform, land-use, soil types) indicate that their overlap in the catchment. 

 

The landforms in the catchment (Fig 3A) were classified using data from field and 

topographic map of the area. Considering elevation, slope, and geomorphologic character 

(surface and subsurface flows, alluvial and colluvial deposition), the catchment was classified 

into six main landforms in ArcGIS (Fig 3A). These are the valley (19% of the catchment 

area), plateau (8%), rolling hill (9%), central ridge (27%), escarpment (29%), and 

mountainous (6%). The reservoir was considered as a separate landform, which covered 

about 2% of the catchment area. The elevation pattern of the catchment is shown in figure 

Catchment 

stratification 

Landform Land-use  

system 

Soil 

types 

Identification of soil 

sampling points (117 plots) 

(purposive sampling) 

Composite soil sampling 

(random sampling from plots) 

Soil sample processing 

and analysis 
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3B. The elevation map of the study catchment was developed in ArcGIS from topographic 

map (scale 1:50,000) obtained from Ethiopian Mapping Agency (EMA, 1997).  The 

topographic map was scanned, geo-referenced using ground control coordinate points and 

contours and spot heights were digitized and tagged with elevation values in a GIS 

environment.  

Figure 3. Landform (A); digital elevation model (B); major soil types (C) and land-use and 

land-cover (D) of the Mai-Negus catchment, northern Ethiopia  

 

The soil data such as available water content, soil texture, bulk density, hydraulic 

conductivity were obtained from the NEDECO database (NEDECO, 1998). Additional soil 

physical, chemical and morphological properties were determined on-site to supplement the 

data gap in the database. According to the FAO-UNESCO (1974) Soil Classification System, 

the main soil types in the study catchment are Eutric Cambisols (67%), Chromic Cambisols 

(13%), Leptosols (15%) and Chromic Vertisols (5%). Chromic Cambisols and Vertisols 

occupy almost the flat areas, Eutric Cambisols the undulating plains and rolling land and 

Leptosols steep to very steep lands (Fig 3C).  

Landsat image of November 2007 supplemented by field survey was used to derive land-use 

and land-cover (LULC) types. The LULC image was rubber sheeted to match ground control 

locations, and the area containing only the Mai-Negus catchment was extracted from the full 
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scene. A root mean square error less than 5 m was achieved while geo-referenced. Ground 

truthing was conducted in the dry season between mid-September and November 2009 using 

a Geographic Positioning System (GPS) (Garmin III). The GPS points were used to geo-

reference the image and as training samples for supervised classification of the Landsat 

image 30 m x 30 m resolution. Sampling points ranging from 10 to 15 were selected for each 

land-use class. Maximum likelihood classifier was then applied to produce six LULC classes 

(Fig. 3D). Overall accuracy of the land use classification was satisfactory in which about 

85.6% was correctly classified. Because of the relatively similar reflectance between grazing 

areas and cultivated fields, different enhancement and transformation techniques and ground 

truth data were used to enhance separating of cover types and delineate training areas. 

About 55% of the land area in the catchment was classified as arable land, 21% for grazing, 

and 14% as exclosure. Dense bush and woodland with mixed forest accounted for about 2% 

of the catchment. The rest of the land was miscellaneous such as settlement, marginal area 

and reservoir (8%). A farmland after harvest is used as a grazing land to use grasses in the 

field and around the boarders for short time (not more than an hour). Grasses in an exclosure 

(landscape under rehabilitation) was used for livestock by cut and carrying system. Part of the 

areas covered by bush and wood land were also opened for grazing but these are dominated 

by unpalatable species and in many cases due to their shading effects grasses are rarely 

grown. The data on cropping systems and soil management practices were collected through 

informal group discussions with local farmers and development agents in the study 

catchment.  

2.3. Soil Sampling and Analysis 

During soil sample collection, the locations of the soil sampling points considered the spatial 

distribution of the different landforms, land-use and land-cover and soil types in the 

catchment as presented in table 1.  A total of 117 soil samples were collected and analysed 

from the sampling points (plots) with an area ranged 150 to 300 m
2
 in the catchment. The 

number of soil samples varied with size of the sampling point in the landforms, land-use and 

soil types. A sampling plot was located considering its homogeneity in hydrological 

condition on the basis of researcher’s field observations. From each soil sampling points 

composite samples of 5 to 8 at 0-20 cm soil depth were collected since this depth is where 

most changes are expected to occur due to natural and anthropogenic activities. The soil 

samples were higher in the sampling points that possessed larger plots. Disturbed soil 

samples from each sampling point were air-dried, pooled, homogenized and sieved to pass 

through 2-mm sieve. 
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Table 1. Soil parameters and other catchment attributes used for SMR and GLM analyses 

under each data group in the Mai-Negus catchment, northern Ethiopia. 

Soil properties  

(n = 117) 

Soil types Land-use types Landforms  

Sand  Chromic Cambisols (n = 34) Forest land (n = 12) Rolling-hills (n = 15) 

Clay  

Silt 

Chromic Vertisols (n = 13) 

Eutric Cambisols (n = 54) 

Plantation protected   

Land (n = 16) 

Mountainous (n = 15) 

Bulk density Leptosols (n = 16) Grazed land (n = 13) Central-ridge (n = 28)  

pH  

EC  

Exchangeable Na 

 Teff (Eragrostis tef)- 

Faba bean (Vicia faba) 

rotation (n = 22) 

Valley(n = 24) 

Plateau (n = 12)  

Escarpment  (n = 17) 

Exchangeable K 

Exchangeable Ca 

Exchangeable 

Mg Sum of basic                       

    cations 

 Teff-wheat (Triticum 

vulgare)/ Barley 

(Hordeum vulgare) 

rotation (n = 17) 

Reservoir (n = 6)  

CEC  

Organic carbon 

 Teff mono-cropping  

(n = 13) 

 

Total nitrogen 

Available    

  phosphorus  

Total phosphorus   

 Maize (Zea mays)  

mono-cropping (n = 13) 

Uncultivated marginal  

land (n = 11) 

 

ESP    

Base saturation    

        percentage 

   

Fe & Zn    

SMR, stepwise multiple regression; GLM, generalized linear model; n is number of samples 

which were taken by considering the area coverage of the factors in the catchment.  

 

Soil samples were determined for soil texture using the Bouyoucos hydrometer method (Gee 

and Bauder, 1986), soil bulk density (BD) by the core method (Blake and Hartage, 1986), 

electrical conductivity (EC) by an EC meter in a 1:2.5 soil to water suspension (Rhoades, 

1982a), soil pH by suspending the soil solution in a 1:2.5 soil to water ratio using a pH-meter 

and a combined glass electrode (Thomas, 1996). Soil organic carbon (OC) was determined by 

the Walkley-Black method (Bremmer and Mulvaney, 1982), available phosphorus (Pav) by 

Olsen (Olsen and Sommers, 1982), total phosphorus (TP) extracted by HClO4 digestion 

determined calorimetrically (Jackson, 1964) and total nitrogen (TN) by the Kjeldhal 

Digestion method (Anderson and Ingram, 1993). Cation exchange capacity (CEC) was 

determined by ammonium acetate extraction buffered at pH 7 (Rhoades, 1982b). 

Exchangeable bases (Ca, Mg, K, Na) were analyzed after extraction using 1M ammonium 

acetate at pH 7.0. Readings for Ca and Mg in the extracts were determined using an atomic 

absorption spectrophotometer, while Na and K were determined by flame photometry (Black 

et al., 1965). Exchangeable sodium percentage (ESP) was calculated by dividing 

exchangeable Na
+
 by CEC. Base saturation percentage (BSP) was calculated by dividing the 
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sum of base-forming cations by CEC (Coyne and Thompson, 2006). Iron and Zinc were 

determined by the method described in Baruah and Barthakur (1999) using 0.005M 

diethylene triamine pentaacetic acid extraction.  

2.4. Data Analysis 

Soil properties, land-use systems, soil types, and landforms were used as predictors to assess 

their relationships with soil BD and TN using SPSS 18.0 software (SPSS, 2011). To do so, all 

soil types, land-use systems and landform types (Table 1) were coded as categorical 

(dichotomous) variable using 1=  presence and 0 = absence, for indicating their presence and 

absence in each sampling point. For example, in the sampling point one the soil type was 

Vertisols, land-use system of teff-pulse rotation and a rolling hills landform, in which these 

variables were coded as 1 whereas the other soil types, land-use and landforms were absented 

in sampling point one and consequently, they were coded as 0. The same procedure holds 

true for the other sampling points in the catchment. The continuous value of the soil 

properties determined from each sampling point was entered into the corresponding 

independent soil variables. After this, the stepwise multiple regression (SMR) was used to 

test the strength of the relationships of BD and TN with all the independent variables. The 

generalized linear model (GLM) was also applied to examine for the relationships of soil BD 

and TN with the main and interaction terms of the different parameters. These two methods 

were selected because of their unique qualities such as the inclusion of input variables with 

good explanatory power in SMR and the ability of GLM to utilize interaction terms (Agyare, 

2004). One common advantage of these techniques is the ability to use both categorical and 

continuous parameters as input variables. The stepwise multiple regression is a sequential 

approach to variable selection, and was used because it allows the inclusion of input variables 

that better explain the response, leaving out parameters that are statistically non-significant or 

of low explanatory power due to the inclusion of other parameters (Hair et al., 1998). The 

GLM differs from the well-known multiple regressions in many respects. For instance, the 

distribution of the independent or response variable does not have necessary to be continuous 

for GLM. Meaning, GLM model allows categorical or nominal variables as input variables 

by recoding them into a number of dichotomous variables (Agyare, 2004). The parameters 

and their data group used for the SMR and GLM analysis are presented in table 1. 

When soil BD and TN were used as the dependent variable in the analysis, the importance of 

each independent parameter was evaluated based on the size of the model coefficient, 

significance level, and coefficient of determination (R
2
) of each statistical model. Besides to 

this, the effect size measure (Eta) in the case of GLM was used as a measure of model 
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performance i.e., measures the association between the main or interaction term and the 

dependent variable. Only data elements that contributed significantly (P ≤ 0.05) to predicting 

soil BD or TN were presented in this study. The R
2
 change gives the percentage of variance 

in the dependent variables (BD and TN) explained by the independent variables. For each 

statistical model, the R
2
 and F-statistic is used as a measure of model performance. The 

stepwise regression analysis was done using the data lists with variable selection method, i.e., 

entering and removal of parameters at P ≤ 0.05 and P ≥ 0.1, respectively, using SPSS 18.0 

(SPSS, 2011). For GLM analysis, the number of interactions is limited to 2-way due to the 

possible increase of multi-collinearity.  

 

3. RESULTS AND DISCUSSION 

3.1. Estimation of Soil Bulk Density Using SMR Analysis 

The result of the stepwise multiple regression (SMR) analysis for soil bulk density (BD) as 

the dependent variable is shown in table 2. An overall model coefficient of determination 

(R
2
) of 0.91 with a significantly high F-statistic of 176.78 was obtained for the relationship of 

soil BD with the soil properties, land-use system and landforms in the catchment. This 

indicates that about 91% of the variance in BD can be explained by the independent 

variables. However, there was no significant (P > 0.05) relationship between BD and soil 

types of nominal data group, and some soil properties (e.g., Ca, Mg, Na) (data not shown). 

The non-significant variables were not included in the SMR analysis result due to their low 

relative contributions. 

Table 2. Stepwise regression coefficients, standard error, significance level and R
2 

change for 

soil bulk density estimation in the Mai-Negus catchment, northern Ethiopia. 
Parameter  Coefficient  Standard  

error  

Significance  

level  

R
2 
change 

Constant  0.686 0.024 0.00  

Organic carbon -0.256 0.012 0.00 0.710 

Sand  0.211 0.015 0.00 0.051 

Silt  -0.135 0.027 0.00 0.033 

CEC -0.022 0.008 0.02 0.006 

Pav -0.031 0.010 0.02 0.004 

Reservoir  -0.205 0.033 0.00 0.033 

Central-ridge 0.041 0.017 0.01 0.014 

Mountainous  0.064 0.016 0.01 0.013 

Forest land  -0.159 0.038 0.01 0.016 

Plantation protected land -0.163 0.042 0.001 0.017 

Marginal land  0.055 0.019 0.03 0.013 

F-statistic (n) 176.78 (117)    

Overall Model R
2 
 0.91    

R
2
,
 
coefficient of determination; CEC, cation exchange capacity; n, number of samples 

included in the analysis.  
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The most important parameters that influence the estimation of BD were identified as OC, 

followed by sand content, the reservoir landform, plantation protected land and forest land-

use systems. This is because these variables showed higher SMR coefficients than the others. 

In line to this, previous reports indicated that sand content and OC were among the most 

important soil property that affected BD in which BD decreases with increasing OC and 

decreasing sand content (e.g., Bauer and Black, 1992; Wagner et al., 1994). Such findings 

thus suggested that soil BD can be estimated using soil texture parameters along with OC 

values. However, Heuscher et al. (2005) reported using stepwise multiple regression that OC 

was the strongest contributor to BD prediction as compared to other soil properties. 

The soil parameters such as CEC and Pav showed lower relationships with soil BD as 

compared to the others, even though their relationships were influenced significantly (Table 

2). The implication is that while estimating BD, the parameters that had larger regression 

coefficients are preferable to those with lower values. The variables such as OC, silt, CEC, 

Pav, reservoir, forest land, plantation protected land-use system that had negative regression 

coefficients indicated an inverse relationship with BD. On the other hand, the variables such 

as sand content, marginal land-use system, central-ridge and mountainous landforms showed 

positive coefficients for their relationships with BD. In line to this, other studies reported that 

positive coefficient indicates that the dependent variable increases as the corresponding 

independent variables increase and vice versa for negative coefficient (e.g., Rawls, 1983; 

Federer et al., 1993; Manrique et al., 1993; Neupane et al., 2002). 

The highest variance (R
2
) while estimation soil BD was explained by organic carbon only for 

71%, and the lowest was by Pav (0.4%) followed by CEC (0.6%). According to Hamilton 

(1990), strong and weak values of R
2
 are defined between ± (0.64-1.0) and ± (0.04-0.25), 

respectively. Generally, considering the different data source groups (soil properties, 

landform and land-use systems) as independent variables, the R
2
 obtained using the SMR 

analysis to estimate soil BD is illustrated in figure 4. The R
2
 for soil properties as the data 

source group in estimating BD was explained by the variance of 80%. This was followed by 

the data source group of the landform for 6% and land-use systems for 5%, in explaining the 

variability of soil BD. Those values indicated that BD variability in the study catchment can 

be explained mainly by the soil properties data group. In light of the above model results, 

other studies prove that stepwise multiple regression (SMR) is more efficient than the full 

model regression to determine predictive equation for yield and yield components (e.g. Naser 

and Leilah, 1993; Mohamed, 1999).  



Gebreyesus Brhane Tesfahunegn (MEJS)                                             Volume 6(1):3-24, 2014 

© CNCS, Mekelle University                         14                                              ISSN: 2220-184X 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of coefficient of determination (R
2
) for soil bulk density (BD) as 

explained by different data source groups in the Mai-Negus catchment, northern 

Ethiopia. 

 

Table 3. Stepwise regression coefficients, standard error, significance level and R
2 

change for 

soil total nitrogen estimation in the Mai-Negus catchment, northern Ethiopia. 

Parameter  Coefficient  Standard 

error  

Significance 

level  

R
2 

change 

Constant  0.176 0.021 0.000  

Organic carbon 0.067 0.004 0.000 0.690 

Silt  -0.025 0.001 0.010 0.018 

Pav 0.042 0.017 0.020 0.011 

Bulk density  -0.009 0.009 0.000 0.006 

CEC 0.010 0.003 0.004 0.001 

Clay  0.036 0.005 0.001 0.009 

Reservoir landform 0.027 0.003 0.000 0.045 

Central-ridge landform -0.021 0.011 0.010 0.012 

Mountainous landform -0.009 0.002 0.003 0.001 

Forest land  0.013 0.010 0.000 0.039 

Marginal land -0.014 0.013 0.010 0.002 

Teff mono-cropping 0.011 0.008 0.010 0.003 

Maize mono-cropping 0.013 0.010 0.000 0.009 

Plantation protected 

land 

0.046 0.014 0.002 0.047 

F-statistic (n) 162.57 (117)    

Overall Model R
2 

 0.89    

R
2
,
 
coefficient of determination; CEC, cation exchange capacity; n, number of samples 

included in the analysis.  

 

3.2. Estimation of Soil Total Nitrogen Using SMR Analysis 

The result of stepwise multiple regression (SMR) analysis between the dependent variable 

(TN) and independent variables (catchment attributes) is presented in table 3. The parameters 

in this table were significant predictors of TN for an overall R
2
 of 0.89 with a significant F-
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statistic of 162.57. However, the coefficient and R
2
 of each variables showed that soil OC 

followed by the plantation protected land-use system and reservoir landform have significant 

contribution for the regression model when compared with the others (Table 3). The better 

estimation of TN by OC could be associated with the organic source of nitrogen in the study 

catchment and this is consistent with the finding reported using linear regression in Rashidi 

and
 

Seilsepour (2009); and Prévost (2004). The SMR model coefficient and R
2
 of the forest 

land-use system was also significantly predicted TN better than the other variables. The 

lowest model coefficient (-0.009) was found for the relationships between TN with BD and 

the mountainous landform.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of coefficient of determination (R
2
) for soil total nitrogen (TN) 

explained by different data source groups in the Mai-Negus catchment, northern 

Ethiopia.  

 

The total variance explained for TN by the different data source groups is shown in figure 5. 

This figure indicates that soil properties followed by land-use systems and landform can 

better predict TN compared to the other landscape attributes. The soil properties (OC, silt, 

clay, BD, Pav, CEC) could predict 74% of the variation in soil TN, even though OC only 

accounted for the largest part (about 69%). Such R
2 

results are rated as strong relationship 

according to the rates described by Hamilton (1990). The land-use system data group 

(plantation protected land, forest land, maize mono-cropping, teff mono-cropping, marginal 

land-use systems) explained the variability in the prediction of TN for 10%. However, the 

larger portion (8.6%) of TN variability was explained by both plantation protected and forest 

land-use systems. The landform data source group (reservoir, central-ridge and mountainous 

landforms) explained for the variability of TN for about 5.8%. From this value, the reservoir 

accounted for explaining the variability in TN for about 3.9%.  This study indicated that land-
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use and landform are not good enough to be useful to predict soil TN as compared to the soil 

properties data group.   

Table 4. GLM regression coefficients, standard error, significance level and effect size 

measure (Eta) for soil BD estimation in the Mai-Negus catchment, northern 

Ethiopia.  

Parameter  Coefficient  Standard 

error  

Significance 

level  

Eta square 

Constant  0.735 0.241 0.001 0.002 

OC -0.314 0.102 0.001 0.114 

Silt  -0.155 0.052 0.003 0.003 

Sand 0.126 0.065 0.004 0.025 

Forest land -0.094 0.020 0.005 0.023 
Plantation protected land -0.053 0.017 0.002 0.019 

Reservoir -0.202 0.070 0.005 0.033 

Central-ridge 0.073 0.013 0.014 0.015 

Mountainous  0.051 0.010 0.020 0.011 

Chromic Cambisols -0.025 0.008 0.030 0.006 

Reservoir   OC -0.421 0.135 0.001 0.160 

OC clay -0.365 0.112 0.001 0.125 

OC   silt -0.226 0.127 0.006 0.136 

Sand   clay 0.263 0.105 0.002 0.035 

Valley   silt -0.231 0.096 0.003 0.037 

Forest land   OC -0.400 0.127 0.005 0.112 

Protected land   OC     

Marginal land   sand -0.137 0.001 0.012 0.045 

Teff mono-cropping   

sand 

0.205 0.130 0.003 0.029 

F-statistic (n) 187.45 

(117) 

   

Overall Model R
2 

 0.92    

BD, soil bulk density; x, interaction between parameters; OC, organic carbon; n, number of 

samples included in the analysis; R
2
, coefficient of determination.  

 

3.3. Estimation Soil Bulk Density Using General Linear Model (GLM) 

The GLM analysis result for the relationship of soil BD with the independent variables is 

presented in table 4. The result shows the coefficient, standard error, significance level and 

measure of size effect (Eta) for the constant or intercept, the main and interaction effects of 

the independent variables. The Eta gives the measure of the association between the main or 

interaction term and the dependent variable, in this case soil BD. The GLM analysis resulted 

in an overall R
2
 of 0.93 with F-statistic of 187.45. The main term effect among the 

parameters in the GLM analysis showed the highest model coefficient and Eta square for OC 

followed by the reservoir landform. However, the interaction term effect of OC with the other 

parameters on the coefficients and Eta square was higher when compared to the main terms 
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effect on BD prediction as this is shown by the GLM analysis (Table 4). In contrast to this 

study, Agyare (2004) has reported that OC was found to be least important in estimating 

hydraulic conductivity, even though this directly influences soil pore size and distribution. 

The least important main term effect in the prediction of soil BD using the GLM analysis was 

explained by the soil type.   

The dominant parameters that influenced soil BD prediction were associated with the 

interaction terms, explaining about 68% of the variance compared to the other data groups 

(Fig 6). The remaining variation in BD was mainly explained by the soil properties (15.2%), 

landforms (8.2%) followed land-use systems (3.2%) and soil type (0.60%) data groups. This 

result indicates that the interaction terms in the GLM analysis are better in estimating soil BD 

in the study catchment conditions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison of measure of size effect (Eta) for soil BD estimation in-terms of 

different data groups using GLM analysis for Mai-Negus catchment, northern 

Ethiopia. 

 

3.4. Estimation of Soil Total Nitrogen Based on GLM 

The coefficient, standard error, significance level and measure of size effect (Eta) for the 

constant or intercept, the main and interaction effects of the independent variables on the 

dependent variable of TN using the GLM analysis is presented in table 5. The overall model 

R
2
 of the GLM analysis was 0.94 with F-statistic of 193.05 for TN. Among the main terms, 

OC (11.7%) showed significantly higher model coefficient and Eta square followed by the 

plantation protected land-use system (1.6%) in explaining TN variability. The minimum 

coefficient and Eta square of the main term effect was obtained due to soil pH even though 

this was significantly influenced soil TN variation. Of the interaction terms, the OC   

plantation protected land system followed by OC   forest land system showed significantly 

higher model coefficient and Eta square than the others. The OC   reservoir interaction term 

also contributed better for TN estimation. This indicates that the soil TN variability can be 
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critically influenced by the OC, land-use system and landform in the catchment. This result is 

consistent with the report in Aruleba and Ajayi (2011); and Rashidi and
 

Seilsepour (2009).  

Table 5. GLM regression coefficients, standard error, significance level and effect size 

measure (Eta) for soil total nitrogen estimation in the Mai-Negus catchment, 

northern Ethiopia.  

 

Parameter  Coefficient  Standard 

error  

Significance 

level  

Eta 

square
a
 

Constant  0.159 0.116 0.008 0.001 

Organic carbon 0.456 0.103 0.001 0.117 

Sand  -0.113 0.083 0.007 0.010 

Silt  0.235 0.091 0.008 0.013 

Clay  0.204 0.108 0.010 0.015 

Bulk density  -0.200 0.132 0.006 0.002 

CEC 0.138 0.034 0.026 0.001 

pH 0.036 0.010 0.009 0.001 

Pav 0.143 0.046 0.00 0.002 

Forest land  0.107 0.049 0.015 0.011 

Teff-pulse rotation land  0.083 0.007 0.003 0.001 

Plantation protected land 0.110 0.020 0.002 0.016 

Marginal land  -0.062 0.010 0.020 0.001 

Reservoir  0.146 0.057 0.021 0.012 

Escarpment  0.105 0.031 0.013 0.005 

Central-ridge  -0.095 0.024 0.010 0.002 

Mountainous  -0.053 0.017 0.030 0.002 

OC   BD -0.586 0.223 0.004 0.126 

BD   clay  -0.135 0.047 0.009 0.018 

BDsilt -0.413 0.210 0.006 0.017 

Sand   silt -0.031 0.005 0.008 0.022 

BD   sand 0.205 0.164 0.005 0.015 
OC   Plantation protected land 0.521 0.187 0.001 0.137 

Maize mono-cropping   silt 0.046 0.006 0.003 0.018 

OC   teff-pulse rotation   0.104 0.053 0.001 0.121 

BD   reservoir 0.472 0.324 0.005 0.016 

OC clay 0.372 0.145 0.001 0.120 

OC   Forest land 0.503 0.203 0.001 0.131 

F-statistic (n) 193.05 (117)    

Overall Model R
2 

 0.94    

x, interaction between parameters; OC, organic carbon; BD, bulk density; CEC, cation 

exchange capacity, N, number of samples included in the analysis; R
2
,
 

coefficient of 

determination. 
a
Eta square is analogous to r

2
 in correlation and regression. Eta-square provides the most 

accurate representation of continuous as well as categorical data, and is well known and 

easy to interpret. It is a descriptive statistic that quantifies the strength of the relationship 

between group membership and the variable you measured.  
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The remaining main and interaction terms also significantly explained the estimation of TN 

in the study catchment (Table 5). The interaction terms accounted for overall Eta square of 

0.74, which means that this is explained for 74% of the variation in soil TN. This is followed 

by the soil properties, land-use and landform in descending order as it is shown in figure 7. 

 

Figure 7. Comparison of measure of size effect (Eta) for soil TN estimation in-terms of the 

different data groups using GLM analysis in the Mai-Negus catchment, northern 

Ethiopia. 

 

3.5. Synthesis of SMR and GLM Analysis Results 

Currently, literature shows that there is no comprehensive model for estimating soil 

parameters which are not easily available, using basic soil properties obtained in soil survey 

and catchment attributes collected directly from a field (Seybold et al., 2009). To contribute 

towards this information gap, this study examined the variables that best explain for variation 

in soil BD and TN using different analysis methods. In this study, the overall R
2
 found from 

SMR and GLM analysis employed to predict soil BD and TN based on key landscape 

attributes is greater than 0.60. This is in agreement with the report by Seybold et al. (2009) 

which stated that when there are no measured data, regression equations developed with R
2
 > 

0.60 are useful and can be used in estimating soil properties. Thus, the relationships of soil 

BD and TN with catchment attributes developed in this study can be used to estimate BD and 

TN in similar conditions. In general, the overall model R
2
 (0.93-0.94) for GLM analysis are 

higher than that of SMR (0.89-0.91) for both dependent variables (Tables 2-5). This could be 

attributed to the inclusion of interaction terms in the GLM, while SMR does not explicitly 

consider that interaction effect. Similarly, Agyare (2004) reported that the interaction terms 

of soil properties with catchment attributes are critical for estimating hydraulic conductivity.    

In addition, the soil type data group had no significant relationship with BD and TN in the 

SMR analysis whereas the reverse is observed in the GLM analysis. The overall R
2
 due to the 

independent parameters on TN (0.94) for the GLM analysis is greater than that of soil BD 

(0.92). However, the R
2
 is higher in the SMR analysis for soil BD (0.91) than TN (0.89). The 
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improvement in R
2
 may be associated with the inclusion of parameters more suitable for the 

dependent variable of soil BD than TN in the SMR analysis. 

The Eta, which is a measure of the association between the two dependent and the different 

independent variables in reflecting the interaction terms is considerably reduced from 74% 

for soil TN to 68% for soil BD variance (Figs 6 &7). This holds true for the Eta of the soil 

properties data group with variance of 16% for TN and 15% for BD. Of the independent 

variables, OC contributed better in predicting the variability of both BD and TN. The R
2
 for 

the relationship of BD and OC using SMR analysis was 0.71, whereas it was 0.69 with TN. 

However, the variance contributed by OC as main term effect for the variability of BD and 

TN in the GLM analysis were 0.114 and 0.118, respectively, which are lower than that of the 

SMR. This shows that linear regression model may be better suited for predicting soil TN 

from soil OC as suggested by Rashidi and
 

Seilsepour (2009). Despite this fact, OC 

contributed higher in both methods as compared to the other independent variables used. The 

model coefficients found from both analysis methods for both dependent variables were 

higher for OC as compared to the other variables. This study indicates that a unit increase in 

organic matter can be caused a relatively larger decrease in soil bulk density but larger 

increase in TN, which is consistent with the findings reported in Federer et al. (1993); and 

Akgül and Özdemir (1996). Thus, management and land-use practices that improve OC 

should be considered in determining representative fields as OC is useful in estimating soil 

BD and TN for soil survey when there are no measured data available. 

 

4. CONCLUSION 

In this study, the potentials of stepwise multiple regressions (SMR) and generalized linear 

models (GLM) were used to predict the variation of soil bulk density (BD) and total nitrogen 

(TN) based on selected environmental data group (soil properties, land-use, landform, soil 

type) at a catchment-scale in northern Ethiopia. The study also attempted to identify the most 

useful environmental variables that predict the BD and TN. The results of SMR and GLM 

analysis showed strong relationships (R
2
 > 0.89) between the two soil properties (soil BD and 

TN) and catchment and soil attributes. Both methods indicated that soil properties are best 

suited to predict BD and TN. Among the different soil properties, organic carbon (OC) 

accounted for the largest share of the variation in BD and TN. The second landscape data 

group that best predicted BD was land-use type followed by landform for BD. However, the 

Eta as a measure of association in the GLM analysis showed higher model coefficient and Eta 

square for the interaction terms of OC   plantation protected land system, OC   forest land 
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system, OC   reservoir with BD and TN.  However, soil TN (68%) is better explained by the 

interaction terms as compared to BD (74%), even though both are significantly related to the 

independent variables. Generally, a higher overall R
2
 of GLM for both dependent variables 

(BD and TN) as compared to that of SMR indicated that inclusion of the interaction terms in 

the GLM analysis improved the variance values. However, the R
2
 of OC in the SMR analysis 

for BD estimation was 0.71 whereas for TN it was 0.69. These values are higher than the Eta 

square of OC in the GLM analysis, indicating that SRM is preferable for estimating BD and 

TN variations using the main term This study suggests that soil BD and TN should be 

estimated based on the soil properties such as organic carbon and other catchment attributes 

using appropriate statistical techniques such as the GLM which is more suitable to consider 

the effects of interaction terms in the study catchment conditions in order to get data for most 

applications.    
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